Crystal Structure of $\mathbf{R b}_{\mathbf{4}} \mathrm{Cu}_{\mathbf{5}} \mathbf{C l}_{\mathbf{9}}$

XIE SISHEN* and S. GELLER
Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309

Received October 7, 1985

Abstract

Crystals of $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ belong to the monoclinic space group $\mathrm{Pa}\left(C_{s}^{2}\right)$ with $a=15.694(5), b=8.544$ (3), c $=14.660(4) \AA, \beta=106.59(2)^{\circ}$ with $Z=4$. The asymmetric unit contains $8 \mathrm{Rb}^{+}, 10 \mathrm{Cu}^{+}$, and $18 \mathrm{Cl}^{-}$ ions. Two of the Rb^{+}ions have seven-coordination to Cl^{-}ions; one may be said to have (7+1)coordination; and the remaining five have eight-coordination. One of the Cu^{+}ions definitely has threecoordination to Cl^{-}ions; for all but one of the other nine, at least one of the $\mathrm{Cu}^{+}-\mathrm{Cl}^{-}$distances is quite long, i.e., $2.52-2.70 \AA$. The structure contains double chains of tetrahedral clusters of CuCl_{4} tetrahedra along the b-axis. The chloride tetrahedra in each tetrahedral cluster are joined by corner sharing, forming chloride octahedra similar to those in $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$. The clusters are joined along the b-axis by edge sharing with an interposed CuCl_{4} tetrahedron. The chains are joined horizontally by corner sharing. It is shown also that $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$ is most probably isostructural with $\mathrm{K}_{2} \mathrm{CuCl}_{3}$. © 1986 Academic Press, Inc.

1. Introduction

We have pointed out elsewhere (1) that the system $\mathrm{RbCl}-\mathrm{CuCl}$ contains four phases, apparently stable at room temperature, with formulas $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}, \mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$, $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$, and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$. We have reported (1) the crystal structure and conductivity of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$; the results indicate that it is a true solid electrolyte, though a poor one. $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ is a considerably better solid electrolyte than $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$, and the results of the structure analysis and conductivity measurements will be reported elsewhere (2).

Here we report the crystal structure of $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ and also give some crystallographic data on $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$ to demonstrate

[^0]that it is isostructural with $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ (3) (see Appendix).
$\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ was not expected to be a solid electrolyte and electrical measurements have confirmed this: at $320^{\circ} \mathrm{C}$ the electrical conductivity is $10^{-7} \Omega^{-1} \mathrm{~cm}^{-1}$. Unlike the cases of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$, the structure contains no channels for movement of Cu^{+}ions through it. Nevertheless, the structure has some features which are worth pointing out, especially those that support unusual aspects of the $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ structures.

2. Experimental

The methods of preparation of the material and of growth of crystals of $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ were similar to those of $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ (1) and of $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ (2). The formula $\mathrm{Rb}_{4} \mathrm{Cu}_{5}-$ Cl_{9} is also an unusual one; therefore, as in
the $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$ cases, specimens with closely neighboring formulas were made. Powder photographs supported the $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ formula, later confirmed by the structure analysis.

Buerger precession camera photographs of a small crystal taken with $\mathrm{Mo} \mathrm{K} \alpha$ radiation indicate that crystals of $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ are monoclinic. Reflections $h 0 l$ are present only when $h=2 n$, and reflections $0 k 0$ are present only when $k=2 n$, implying that the most probable space group is $P 2_{1} / a$. However, as will be seen later, the correct structure belongs to space group Pa .

Attempts were made to obtain spherical crystals, but only ellipsoids of revolution could be attained with a sphere grinder (4). The crystals have a (001) cleavage plane, probably partly the cause of the difficulty. The crystal used for data collection had a major radius of 0.11 mm and a minor radius of 0.08 mm .

The data used for the structure determination and refinement were collected with a Nicolet P3/F autodiffractometer with $\mathrm{Mo} K \alpha$ radiation, monochromatized by a graphite crystal. The 2θ range was $2.0-$ 50.0°; scan speed was $2.0-29.3^{\circ}$ per min. Scan range was from 0.8° below $K \alpha_{1}$ to 0.9° above $K \alpha_{2}$. The intensities of four reflections were checked after cvery 96 measurcments.

Cell dimensions were determined by a least-squares fit of the setting angles of 25 reflections in a 2θ range of 10.7 to 32.4°. The results are $a=15.694(5), b=8.544(3)$, $c=14.660(4) \AA, \beta=106.59(2)^{\circ}$. The volume of the unit cell is $1884(2) \AA^{3}$. The formula weight of $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ is 978.66 ; with four $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ per unit cell, the X-ray density is $3.451 \mathrm{~g} \mathrm{~cm}^{-3}$. A small single crystal sank in diiodomethane, which has a density of $3.325 \mathrm{~g} \mathrm{~cm}^{-3}$.

The linear absorption coefficient for Mo $K \alpha$ radiation is $168 \mathrm{~cm}^{-1}$. Empirical absorption corrections obtained by measurement of intensities of 180 pairs of equiva-
lent reflections were applied to the data. Lorentz-polarization corrections were also applied.

The total number of independent reflections measured was 3656 , of which 1702 were accepted as observed based on the criterion:

$$
F_{\text {obs }}^{2}>6 \cdot F_{\mathrm{obs}} \cdot \sigma\left(F_{\mathrm{obs}}\right)
$$

3. Determination and Refinement of the Structure

Results of statistical calculations definitively ruled out the centrosymmetric space group, leaving Pa as most probable because the $h 0 l$ class of reflections is so much larger than the $0 k 0$ class. The structure was solved by direct methods (MULTAN). The peaks from MULTAN contained almost the whole structure, but the peak heights must not be taken seriously. The positions of two of the Cu^{+}ions not given by MULTAN were somewhat difficult to ascertain, and in the end, it was necessary to conclude that the structure has a few anomalies.
The general, and only, positions in space group Pa are twofold: $x, y, z ; x+\frac{1}{2}, \bar{y}, z$. Thus the asymmetric unit contains 36 ions: $8 \mathrm{Rb}^{+}, 10 \mathrm{Cu}^{+}$, and $18 \mathrm{Cl}^{-}$. Thercfore, there are 106 positional and 216 thermal parameters, a scale factor and extinction coefficient, a total of 324 parameters, to be determined and refined. The two Cu^{+}ion positions that were not given by MULTAN are those of Cu 6 and Cu 7 (Table I). These were ascertained by difference Fourier and trial and error calculations. High thermal parameters persisted for these ions to the end.

The least-squares technique was used for refinement. Because of numerous high pair correlations, some as high as ± 0.95, there were some oscillations in parameters. However, in the final cycles all 324 parameters were allowed to vary and for the very
last one, the ratios parameter shift/standard error| were between 0.0 and 0.27 and 161 were less than 0.10 , indicating effective convergence. For the 1702 observed reflections, $R=\Sigma| | F_{\text {obs }}\left|-\left|F_{\text {calc }}\right|\right| / \Sigma\left|F_{\text {obs }}\right|=$ $0.034 .^{1}$ The final estimated standard error of an observation of unit weight is 0.99 . The value of the extinction coefficient, g, which the program applies to the $F_{\text {calc }}$ as

$$
\left|F_{\mathrm{c}}\right|\left(1+g I_{\mathrm{c}}\right)^{-1}
$$

converged to $6.326 \times 10^{-7} ; I_{\mathrm{c}}$ is the calculated intensity.

The final results of the refinement are given in Tables I-III: Table I, positional parameters and the equivalent isotropic thermal parameters, $B_{\text {eq }}$; Table II, thermal parameters, $U_{i j}=\beta_{i j} / 2 \pi^{2} a_{i}^{*} a_{j}^{*}$; Table III, the axial lengths of the root mean square vibration ellipsoids.

Calculations were also done on the enantiomorph; they could not distinguish between the two; that is, the R-values were the same. Some minor differences outside 3σ limits occurred; these also did not indicate which was the more likely. The comparison of individual $\left|F_{\text {calc }}\right|$ vs $\left|F_{\text {obs }}\right|$ pairs also did not give an indication.

The calculations were carried out with the Structure Determination Package on the PDP11/23 supplied by Molecular Structure Corporation, modified for ions. Atomic scattering factors were taken from Volume 4 of the International Tables for Cystallography.

[^1]TABLE I
Positional Parameters and $B_{\text {eq }}$

Atom	x	y	z	$\begin{gathered} B_{\text {eq }} \\ \left(\AA^{2}\right) \end{gathered}$
Rb1	0.000	0.3344(3)	0.000	3.59(5)
Rb2	0.2967(1)	0.1561 (3)	0.0135(2)	4.21(6)
Rb3	0.4792(1)	0.4860 (3)	-0.4699(2)	3.35(5)
Rb4	0.1103(1)	0.0185(3)	-0.4783(2)	3.63(5)
Rb5	-0.1194(1)	0.1648(3)	$0.2655(2)$	$3.55(5)$
Rb6	-0.4180(1)	0.3410(3)	0.2540(2)	3.68(5)
Rb7	-0.2334(1)	$0.4825(3)$	-0.2544(2)	4.23(5)
Rb8	-0.6021(1)	0.0168(3)	$-0.2620(2)$	3.84(5)
Cu 1	-0.2852(2)	-0.3982(5)	0.4450(2)	5.53(9)
Cu 2	-0.1661(2)	-0.1119(4)	0.4429(2)	4.30(7)
Cu 3	-0.4557(2)	0.3782(5)	-0.1696(3)	6.04(9)
Cu 4	-0.3310(2)	0.0990(4)	-0.1729(3)	5.36(9)
Cu 5	-0.1730(2)	-0.3737(4)	0.2500 (2)	4.35(7)
Cu6	0.1201(2)	0.1054(5)	0.2248(3)	9.2(1)
Cu 7	-0.2449(3)	0.3642(6)	$0.0227(4)$	9.5(1)
Cu8	-0.4438(2)	0.1512(5)	0.0094(3)	7.7(1)
Cu 9	-0.2127(2)	0.2447(4)	0.4803(3)	4.68(8)
Cu10	-0.4095(2)	-0.2570(4)	-0.2153(3)	5.20(8)
Cl1	-0.3227(4)	$0.3448(9)$	-0.4693(4)	4.5(1)
Cl 2	-0.0816(3)	0.1300(8)	-0.4779(5)	3.8(1)
Cl 3	-0.1953(3)	0.1745 (8)	$-0.0998(5)$	4.2(1)
Cl 4	0.4498(3)	0.2974(7)	-0.0821(4)	3.8(1)
Cl 5	-0.3135(4)	-0.2904(8)	0.1654(4)	4.6(2)
C16	-0.3085(4)	0.2076(9)	$0.1102(4)$	5.4(2)
Cl7	-0.5062(3)	$0.0015(7)$	0.1349(4)	3.3(1)
Cl8	-0.1139(4)	0.4979(8)	0.1369(4)	4.1(1)
C19	-0.2906(3)	0.0342 (7)	0.3541 (4)	3.3(1)
Cl10	-0.2083(3)	0.4470 (9)	$0.3615(4)$	4.1(1)
Cl11	-0.4303(4)	$-0.3182(7)$	$0.3712(5)$	4.0(1)
Cl12	-0.0703(4)	-0.1943 (7)	$0.3607(4)$	3.3(1)
Cl13	-0.3024(3)	-0.1587(7)	-0.2637(4)	3.7(1)
Cl14	0.4608(3)	-0.3732(7)	-0.2616(4)	3.0 (1)
Cl15	-0.3317(3)	-0.4709(7)	-0.0826(4)	3.5(1)
C116	-0.4165(3)	-0.0521(5)	-0.0904(3)	2.29(9)
Cl17	-0.4327(3)	$0.2372(7)$	-0.2929(3)	2.7(1)
Cl18	-0.1901(4)	-0.2650(8)	-0.4413(5)	4.4(1)

Note. For this case, $B_{\text {eq }}=\frac{s}{3} *\left\{a^{2} * \beta(1,1)+b^{2} *\right.$ $\left.\beta(2,2)+c^{2} * \beta(3,3)+2 * a * c * \beta(1,3) * \cos \beta\right\}$.

4. Description of the Structure

A projection of the structure down the b axis is shown in Fig. 1; a stereographic pair, looking almost along the b-axis is given in Fig. 2.
The $\mathbf{R b}^{+}$ion coordination in this struc-

TABLE II
General Temperature Factor Expressions- U 's

Name	$U(1,1)$	$U(2,2)$	$U(3,3)$	$U(1,2)$	$U(1,3)$	$U(2,3)$	$U_{\text {iso }}$
Rbl	0.048(1)	0.037(1)	0.050(1)	-0.010(1)	$0.0111(9)$	-0.006(1)	0.045(1)
Rb2	0.034(1)	0.052(1)	0.065(2)	$0.006(1)$	$0.001(1)$	0.010(1)	0.053(1)
Rb3	0.042(1)	$0.044(1)$	0.037 (1)	0.018 (1)	0.0041 (9)	$0.013(1)$	0.042(1)
Rb4	$0.045(1)$	$0.041(1)$	0.049(1)	0.005 (1)	$0.0085(9)$	-0.010(1)	0.046 (1)
Rb5	0.0414(8)	$0.056(1)$	0.043(1)	0.020 (1)	$0.0217(7)$	$0.008(1)$	$0.045(1)$
Rb6	0.052(1)	0.042(1)	0.047(1)	$-0.001(1)$	0.0162(9)	-0.019(1)	0.047 (1)
Rb7	$0.061(1)$	$0.051(1)$	0.059(1)	0.019(1)	$0.0326(9)$	0.013(1)	0.054(1)
Rb8	0.044(1)	0.049 (1)	0.057(1)	-0.008(1)	0.0199(8)	$-0.007(1)$	0.049(1)
Cul	$0.039(1)$	0.090(2)	$0.075(2)$	$0.002(2)$	$0.005(1)$	-0.049(2)	0.070(1)
Cu 2	0.064(1)	0.043(2)	0.064(2)	0.005 (1)	$0.030(1)$	0.018(2)	$0.054(1)$
Cu 3	0.084(2)	0.087(3)	$0.073(2)$	-0.024(2)	0.046 (1)	$-0.020(2)$	$0.076(1)$
Cu 4	0.047(2)	$0.061(2)$	0.080(2)	-0.005(2)	-0.007(2)	0.007(2)	$0.068(1)$
Cu 5	$0.063(1)$	$0.061(2)$	$0.050(2)$	0.021 (1)	$0.031(1)$	0.017(2)	$0.055(1)$
Cu6	0.048(2)	0.141 (3)	$0.116(3)$	-0.063(2)	-0.047(2)	$0.081(2)$	$0.117(1)$
Cu 7	0.108(2)	0.132(3)	0.132(3)	0.042(3)	0.053(2)	0.092(2)	0.120(1)
Cu 8	0.059(2)	$0.109(3)$	0.097(3)	$0.039(2)$	-0.025(2)	-0.045(2)	$0.096(1)$
Cu 9	0.034(1)	$0.064(2)$	$0.087(2)$	-0.002(1)	$0.028(1)$	-0.008(2)	0.059(1)
Culo	0.066(2)	0.052(2)	$0.088(2)$	-0.016(1)	$0.035(1)$	-0.021(2)	0.066(1)
ClI	0.067(3)	$0.063(4)$	0.048 (3)	0.003(3)	$0.027(2)$	-0.015(3)	$0.057(1)$
Cl 2	0.025(2)	0.053(4)	$0.061(4)$	-0.006(2)	$0.003(2)$	-0.015(3)	0.048 (1)
Cl 3	0.022(2)	0.074(4)	0.060(4)	-0.001(3)	0.008(2)	$0.003(4)$	0.053 (1)
C 4	0.038(2)	0.059(4)	0.057(3)	0.008(2)	$0.030(2)$	0.024(3)	0.048(1)
C15	0.038(3)	0.081(5)	$0.037(3)$	0.013(3)	-0.018(3)	-0.010(3)	$0.058(1)$
C16	$0.071(3)$	0.093(5)	0.053(3)	-0.047(3)	0.040(2)	-0.005(3)	$0.068(1)$
C17	0.019(2)	0.044 (3)	0.059(3)	-0.012(2)	$0.005(2)$	-0.016(3)	$0.042(1)$
C18	0.066(3)	0.067(4)	0.028(2)	-0.016(3)	0.025(2)	-0.019(3)	$0.052(1)$
C19	0.061(3)	0.035(3)	0.026(2)	-0.010(2)	0.010(2)	0.016(2)	0.042 (1)
Cl 10	0.039(3)	0.078(4)	$0.033(3)$	-0.002(3)	0.001(2)	0.012(3)	0.052(1)
Cl11	0.054(3)	0.029(3)	$0.067(4)$	0.013(2)	$0.010(3)$	-0.020(3)	$0.051(1)$
Cl12	0.059(3)	$0.025(3)$	0.040 (3)	0.006(2)	0.010(2)	0.009(3)	$0.042(1)$
Cl13	$0.036(2)$	0.037(3)	0.082(3)	0.003(2)	0.040(2)	-0.004(3)	0.047(1)
C114	0.057(3)	$0.032(3)$	$0.029(3)$	-0.008(2)	0.016(2)	-0.010(2)	$0.038(1)$
Cl15	0.023(2)	0.053(3)	0.053(3)	-0.008(2)	0.003(2)	0.023(3)	0.044(1)
Cl16	0.048(2)	0.008(2)	$0.041(2)$	0.004(2)	0.028(2)	0.009(2)	0.029(1)
Cl17	$0.038(2)$	0.051(3)	$0.009(2)$	$0.020(2)$	$0.001(2)$	$0.001(2)$	$0.034(1)$
Cli8	0.058(3)	$0.037(3)$	0.075(4)	0.007(3)	0.028(2)	-0.013(3)	$0.056(1)$

$$
\text { Note. } U_{\mathrm{iso}}=B_{\mathrm{eq}} / 8 \pi^{2}
$$

ture is between that of $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$ and $\mathrm{Rb}_{18^{-}}$ $\mathrm{Cu}_{31} \mathrm{Cl}_{49}$ (1). In $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$ which we believe to be isostructural with $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ (see Appendix), the coordination number (C.N.) must be seven, whereas in $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ it is nine for one Rb^{+}ion and what has been called $(7+2)$ for the other. In $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$ (Table IV, Figs. 1 and 2), at least two of the Rb^{+}ions, Rb2 and 6, have C.N. 7; at least
four, $\mathrm{Rb} 3,4,5$, and 8 , appear to have C.N. 8. $\mathrm{Rb1}$ has seven Cl^{-}neighbors at distances $3.21-3.50 \AA$ with an average of $3.34 \AA$, which is a good C.N. 7 distance for Rb^{+}-Cl^{-}(1). If the longer distance, $3.72 \AA$, is included, the average $\mathrm{Rb}^{+}-\mathrm{Cl}^{-}$distance becomes $3.39 \AA$, which is in good agreement with the $\mathrm{C} . \mathrm{N} .8 \mathrm{Rb}^{+}-\mathrm{Cl}^{-}$distance of 3.38 \AA. Rb 7 has five $\mathrm{Rb}-\mathrm{Cl}$ distances at $3.22-$

TABLE III
Root Mean Square Amplitudes of Thermal Vibration in Ångstroms

Atom	Min.	Intermediate	Max.
Rb1	0.174	0.228	0.233
Rb2	0.170	0.231	0.279
Rb3	0.138	0.218	0.247
Rb4	0.181	0.207	0.250
Rb5	0.153	0.200	0.268
Rb6	0.156	0.227	0.253
Rb7	0.188	0.203	0.290
Rb8	0.191	0.216	0.250
Cul	0.180	0.200	0.371
Cu 2	0.176	0.231	0.281
Cu 3	0.211	0.254	0.347
Cu 4	0.197	0.244	0.325
Cu5	0.184	0.203	0.301
Cu6	0.121	0.217	0.537
Cu7	0.198	0.304	0.477
Cu8	0.185	0.243	0.448
Cu 9	0.164	0.249	0.299
Cu10	0.200	0.236	0.319
Cl1	0.176	0.262	0.269
Cl 2	0.149	0.217	0.275
Cl3	0.148	0.248	0.273
C14	0.138	0.200	0.291
C15	0.123	0.246	0.313
C16	0.119	0.242	0.362
C17	0.117	0.204	0.264
C18	0.128	0.226	0.294
C19	0.105	0.207	0.265
Cl10	0.165	0.214	0.287
Cl11	0.122	0.229	0.294
Cl12	0.143	0.211	0.249
Cl13	0.126	0.195	0.294
Cl14	0.141	0.189	0.244
Cl15	0.142	0.175	0.287
Cl16	0.073	0.154	0.240
Cl17	0.095	0.159	0.259
Cl18	0.164	0.243	0.283

$3.41 \AA$, two at 3.67 and $3.70 \AA$, and one at $3.75 \AA$. The first seven average $3.41 \AA$, which is $0.03 \AA$ greater than a C.N. 7 distance; if the longest distance is included, the average is $3.45 \AA$, which is rather long for the C.N.-8 distance. Perhaps in analogy with the so-called $(7+2)$-coordination, this could be called $(7+1)$.

TABLE IV
Rb-Cl Distances and Standard Errors (Å)

Site	$\mathrm{Rb}-\mathrm{Cl}$				Av.
Rb1	Cl 3	3.29(1)	Cl 8	3.35(1)	
	Cl 4	3.38(2)	Cl14	3.72(1)	
	Cl 5	3.25(1)	Cl15	3.41(1)	3.34(1)
	Cl7	3.50(2)	Cl16	3.21(1)	(3.39)
Rb2	Cl 3	3.30(2)	Cl 8	3.54(2)	
	Cl 4	3.33(1)	Cl15	3.42(1)	
	Cl 5	3.39(2)	Cl16	3.38(1)	3.39(1)
	Cl7	3.37(1)			
Rb3	Cl 1	3.33(1)	Cl 12	3.45(1)	
	Cl 2	3.41(2)	Cl14	3.37(1)	
	Cl10	3.31(1)	C117	3.34(1)	3.38(1)
	Cl11	3.48(2)	C118	3.38(1)	
Rb4	Cl1	3.27(1)	Cl12	3.62(2)	
	Cl 2	3.16(1)	C113	3.28(2)	
	Cl 9	3.29(1)	Cl17	3.70(1)	3.41(1)
	Cl11	3.32(1)	C118	3.68(1)	
Rb5	Cl 2	3.65(2)	Cl9	3.48(1)	
	Cl 6	3.20(2)	Cl10	3.30(2)	
	Cl 7	3.28(1)	Cl11	3.21(1)	3.37(1)
	Cl 8	3.43(2)	Cl12	3.37(1)	
Rb6	Cl 6	3.28(2)	Cl10	3.34(1)	
	Cl7	3.46(1)	Cl11	3.41(1)	
	Cl 8	$3.36(1)$	C112	3.44(1)	3.38(1)
	Cl 9	3.37(1)			
Rb7	Cl 1	3.28(2)	Cl14	3.22(1)	
	Cl 3	3.41(2)	C115	3.33(1)	
	Cl 4	3.75(2)	Cl17	3.67(1)	3.41(1)
	Cl13	3.24(1)	C118	3.70(1)	(3.45)
Rb8	Cl 2	3.50(2)	Cl14	3.48(1)	
	Cl 3	3.53(2)	C116	3.31(1)	
	Cl 4	3.49(2)	C117	3.39(1)	3.42(1)
	C113	3.36(1)	C118	3.35(2)	

RbCl has the NaCl structure; therefore, the Rb^{+}ion is coordinated to six Cl^{-}ions. In $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$, all the Rb^{+}ions have C.N. 9 . Thus, there is an interesting trend in the structures of the $\mathrm{RbCl}-\mathrm{CuCl}$ system. The coordination of the Rb^{+}to Cl^{-}ions increases with the $\mathrm{Cl}^{-} / \mathrm{Rb}^{+}$ratio and decreases with the $\mathrm{Cl}^{-} / \mathrm{Cu}^{+}$ratio. This should not be surprising; however, such trends do not always occur. For example, in both CsCl and $\mathrm{CsCu}_{2} \mathrm{Cl}_{3}$ (5), the Cs^{+}ion has C.N. 8.

Tetrahedral clusters of CuCl_{4} tetrahedra

Fig. 1. Projection of the structure down the b-axis. The smallest circles represent Cu^{+}ions, the intermediate circles, Rb^{+}ions, and the largest, Cl^{-}ions.
are joined into rather complicated double chains that are parallel to the b-axis (Fig. 3). The prriodicity of these chains, along the b axis, is easily seen in Fig. 3. The double
chains are isolated from each other in the a and c directions by intervening Rb^{+}ions.
Two tetrahedral groups of Cu^{+}ions (Fig. 3) are formed by $\mathrm{Cu} 1,2,5,6$ in the left

Fig. 2. Stereoscopic view of the structure roughly down the b-axis. The smallest circles represent Cu^{+}ions, the intermediate circles, Rb^{+}ions, and the largest, Cl^{-}ions.

Fig. 3. Stereoscopic view of the chains of CuCl_{4} tetrahedra.
chain of Fig. 3 and by $\mathrm{Cu} 3,4,7,8$ in the right chain. The chloride tetrahedra of each tetrahedral group of Cu^{+}ions are joined by
corner sharing, thereby forming chloride octahedra, similar to those in $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}$ and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}$. In the chain on the left the tetrahedral cluster is joined to the next one along b by edge sharing with the interposed Cu 9 tetrahedron of chlorides (Fig. 3). On the right, the joining is made by edge sharing with the interposed Cu10 tetrahedron of chlorides. The two chains are joined horizontally by corner sharing, that is, of Cl7 and Cl8 (Fig. 3).

In CuCl , each Cu^{+}ion is surrounded by a regular tetrahedron of Cl^{-}ions, with $\mathrm{Cu}-\mathrm{Cl}$ distance, $2.345 \AA$, and $\mathrm{Cl}-\mathrm{Cl}$ distance, $3.830 \AA$. The average $\mathrm{Cu}-\mathrm{Cl}$ values (Table V) for $\mathrm{Cu} 4,5,7$, and 10 are significantly higher than the average $\mathrm{Cu}-\mathrm{Cl}$ distance in CuCl . In Ref. (1), we have considered a tetrahedral $\mathrm{Cu}-\mathrm{Cl}$ distance greater than or equal to $2.64 \AA$ as "very long" and one equal to $2.52 \AA$ as "rather long." In $\mathrm{Rb}_{4} \mathrm{Cu}_{5}$ Cl_{9}, all the Cu^{+}ions but Cu 5 , have at least one very long or one rather long $\mathrm{Cu}-\mathrm{Cl}$ dis-

TABLE V
Interionic Distances (\AA) of The Cu-Cl Tetrahedra

Site		$\mathrm{Cu}-\mathrm{Cl}$ (A)			$\begin{gathered} \mathrm{Av} \\ \mathrm{Cu}-\mathrm{Cl} \\ (\AA) \end{gathered}$	$\mathrm{Cl}-\mathrm{Cl}^{\prime \prime}$ (A)						$\begin{aligned} & \mathrm{Av} \\ & \mathrm{Cl}-\mathrm{Cl} \\ & (\mathrm{~A}) \end{aligned}$
Cul	Cl 1	$2.68(2)$	CIII	2.33(2)		Cl1-Clio	3.56	CII-Cl18	3.89	Clio-Cl18	3.75	
	Cl 10	2.36(2)	CII8	$2.21(2)$	2.40(2)	$\mathrm{Clt}-\mathrm{Clll}$	3.79	Cllo-Cli!	4.06	Clli-Cil8	4.01	3.84
Cu 2	Cl 2	$2.55(2)$	$\mathrm{Cl12}$	2.29(2)		$\mathrm{Cl2-C19}$	3.59	Cl2-C118	3.89	C19-C118	3.91	
	C19	2.37(1)	Cl18	2.26(2)	2.37(2)	$\mathrm{Cl} 2-\mathrm{Cl12}$	3.68	Cl9-Cl12	3.95	Cl12-Cl18	3.93	3.83
Cu 3	Cl4	2.33(1)	C115	2.38(2)		$\mathrm{Cl}_{4}-\mathrm{Cl14}$	3.89	Cl4-Cll 7	4.06	Cl14-Cl17	3.81	
	Cl14	2.65(2)	Cl17	2.29 (1)	2.41 (2)	Cl4-Cl15	3.96	Cl14-Cl15	3.65	Cl15-Cl17	3.93	3.88
Cu 4	Cl 3	2.1911	Cl 16	2.42(1)		$\mathrm{Cl3}_{3-\mathrm{Cli3}}$	3.79	$\mathrm{Cl}-\mathrm{Cl17}$	4.02	Cl13-Cl17	3.91	
	Cl13	2.68(2)	C117	2.33 (1)	2.41 (1)	C13-C116	4.01	Cli3-Cll 6	3.62	Cl16-C117	3.82	3.86
Cu 5	Cls	2.31(1)	Cl10	2.42(2)		C15-C18	3.74	C5-C12	4.15	Ci8-C112	4.11	
	C18	2.39(1)	Cl 12	2.47(2)	2.40(1)	Cl5-Cl10	3.65	Cl8-C110	4.00	$\mathrm{Cl} 10-\mathrm{Cl} 12$	3.75	3.90
Cu6	Cl 5	$2.21(2)$	Cl 9	2.34(1)	$2.26(1)$	C15-C17	3.85	C17-Cl9	3.96			3.89
	Cl 7	$2.24(1)$	Cllı	3.08(2) ${ }^{\text {a }}$		C15-C19	3.86					
Cu7	Cl 3	2.70(2)	Cl 8	2.52(2)		C13-C16	3.98	Cl3-Clis	3.76	C16-Cl15	3.88	
	Cl 6	2.27(2)	C115	2.24(2)	2.43 (2)	$\mathrm{Cl}_{3}-\mathrm{Cl} 8$	4.33	C16-Cl8	3.87	Cl8-Clis	3.98	3.97
Cu8	C14	2.21(2)	C17	2.65(2)		C14-C16	4.10	Cl4-C116	3.67	Cli-Cl16	3.69	
	Cl 6	2.27(2)	C16	2.39 (1)	2.38(2)	Cl4-C7	3.85	C16-C17	3.67	Ci7-Cll 6	3.97	3.85
Cu9	Cll	2.23(2)	C19	2.62(2)		$\mathrm{Cl1}-\mathrm{Cl} 2$	4.24	Cli-Clio	3.56	C12-C110	3.76	
	Cl 2	2.2002)	C110	2.47(2)	2.38(2)	Cli-C19	3.84	Cl2-C19	3.59	C19-C110	3.75	3.79
Cu10	Cl13	2.17(1)	Cl15	2.70(2)		Cl13-Cl14	4.15	Cll3-Cli6	3.62	Cl14-C116	3.84	
	Cl14	2.19(2)	Cl 16	2.56(2)	$2.412)$	Cll3-Cl15	3.88	C114-Cl15	3.65	Clls-Cl16	3.81	3.82

[^2]TABLE VI
Distance of Cu^{+}Ion to Nearest Cl Plane and RMS Vibration Amplitude and $\mathrm{Cu}-\mathrm{Cl}$ Bond in Same Direction

Cu number ion	Nearest Cl plane	Distance (\AA) Cu to plane	$\left\langle U_{\perp}\right\rangle$ (\AA)	Bond direction
1	$10,11,18$	0.32	0.37	$\mathrm{Cul-Cl1}$
2	$9,12,18$	0.40	0.27	$\mathrm{Cu} 2-\mathrm{Cl} 2$
3	$4,15,17$	0.37	0.34	$\mathrm{Cu} 3-\mathrm{Cl14}$
4	$3,16,17$	0.34	0.30	$\mathrm{Cu} 4-\mathrm{Cl13}$
5	$5,8,12$	0.59	0.21	$\mathrm{Cu5}-\mathrm{Cl10}$
6	$5,7,9$	0.26	0.54	$\mathrm{Cu6-Cl11}$
7	$6,8,15$	0.63	0.40	$\mathrm{Cu} 7-\mathrm{Cl} 3$
8	$4,6,16$	0.51	0.45	$\mathrm{Cu}-\mathrm{Cl} 7$
9	$1,2,10$	0.34	0.25	$\mathrm{Cu} 9-\mathrm{Cl} 9$
10	$13,14,16$	0.35	0.30	$\mathrm{Cul0-Cl15}$

Note. $\left\langle U_{\perp}\right\rangle$ is the rms vibration amplitude perpendicular to the plane.
tance associated with them. The Cu6-Cl11 distance, $3.08 \AA$, is so long that Cl 11 should not be considered to be coordinated to Cu6. Thus Cu6 has three-coordination, with average $\mathrm{Cu}-\mathrm{Cl}$ distance, $2.26 \AA$ (Table V). The Cu 6 ion does not lie in the plane of Cl 5 , 7, and 9, to which Cl6 is coordinated; its distance from the plane is $0.26 \AA$. The Cu6 ion has large thermal vibrations (Tables IIII); its maximum vibration amplitude, 0.54 $\AA \AA$ is in a direction perpendicular to the $\mathrm{Cl5}$, 7,9 plane, which is also close to the Cu6Cl11 direction. It is clear, that in this direction, thermal vibration of the Cu6 ion carries it to a distance of $0.28 \AA \circ$ on the other side of the $\mathrm{Cl5}, 7,9$ plane. It should be noted (Figs. 2 and 3) that the direction of the maximum amplitude of vibration of the Cu6 ion is not into the "included" Cl octahedron.

In CuCl , the distance of the Cu^{+}ion to the faces of the Cl tetrahedron is $0.78 \AA(a)$ $4 \sqrt{3}$). For five of the nine Cu^{+}ions in Cl tetrahedra in $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$, the distance (Ta ble VI) of the Cu^{+}ion to the nearest Cl plane in the tetrahedron is less than half $0.79 \AA$. For all the Cu^{+}ions but Cu 5 , the rms vibration amplitude in the direction of
this distance is very close to the maximum (Tables III and VI). Furthermore, except for Cu , these are very nearly along the longest $\mathrm{Cu}-\mathrm{Cl}$ distances. Cu 5 does not have a particularly long $\mathrm{Cu}-\mathrm{Cl}$ distance (Table V) relative to its average $\mathrm{Cu}-\mathrm{Cl}$ distance.

Of the eight Cu^{+}ions that are in the two tetrahedral clusters and, except for Cu6, have Cl tetrahedra that share a face with an empty octahedron, the high rms vibration amplitudes of Cu1, 2, 3, 4, 8 of Table VI are perpendicular to the octahedral faces. The $\mathrm{Cl} 6,8,15$ face of the Cu 7 tetrahedron is shared with an empty Cl tetrahedron formed by Cl5, 6, 8, 15 (Figs. 2 and 3). The face that the Cu 5 tetrahedron shares with one of the empty chloride octahedra is formed by $\mathrm{Cl} 5,10,12$ (Fig . 3); the Cu5 ion is $0.87 \AA$ from this plane and the rms vibration amplitude in this direction is $0.20 \AA$. The face shared by the Cu 7 tetrahedron and the other empty octahedron is formed by $\mathrm{Cl} 3,8,15$ (Fig. 3); the Cu 7 ion is $0.87 \AA$ from this plane and the rms vibration amplitude in this direction is $0.26 \AA$.

The tetrahedral clusters of Cu^{+}ions may be compared with the tetrahedral arrangement of Cu^{+}ions in zinc blende-type CuCl in which each $\mathrm{Cu}^{+}-\mathrm{Cu}^{+}$distance is $3.830 \AA$ equal to the $\mathrm{Cl}^{-}-\mathrm{Cl}^{-}$distance. In the Cu 1 , 2, 5, 6 cluster (Fig. 3), the distances (omitting the Cu prefix) are: $1-2,3.09(1) ; 1-5$, $3.77(1) ; 1-6,4.02(1) ; 2-5,3.58(1) ; 2-6$, $3.92(1) ; 5-6,3.906(8) \AA$. The average value is 3.71 (1) \AA. In the Cu3, 4, 7, 8 cluster (Fig. 3), the distances are: $3-4,3.10(1) ; 3-7$, $3.69(1)$; $3-8,3.23(1) ; 4-7,3.60(2) ; 4-8$, 3.63(1); 7-8, 3.57(1) \AA. The average value is 3.47 (1) \AA. Most of these $\mathrm{Cu}-\mathrm{Cu}$ distances are significantly shorter than the $\mathrm{Cu}-\mathrm{Cu}$ distance in CuCl . This result is a consequence of the short distances between the Cu^{+}ions and the faces shared with the empty octahedra.

The three structures, i.e., of $\mathrm{Rb}_{4} \mathrm{Cu}_{5} \mathrm{Cl}_{9}$, $\mathrm{Rb}_{18} \mathrm{Cu}_{31} \mathrm{Cl}_{49}(1)$, and $\mathrm{Rb}_{4} \mathrm{Cu}_{9} \mathrm{Cl}_{13}(2)$ show, at
the very least, a tendency of the Cu^{+}ion toward three-coordination, supporting the suggestion (6) that the Cu^{+}ion is favorable to ionic conductivity in solids because it is stable in both tetrahedral and three-coordination.

The plane $z \cong 0.59$ cuts only $\mathrm{Rb}^{+}-\mathrm{Cl}^{-}$ bonds (Fig. 1). The bonding across this plane is weak enough to allow the crystals to cleave in it; i.e., the (001) plane is a cleavage plane. A similar cleavage plane occurs in $\mathrm{CsCu}_{2} \mathrm{Cl}_{2} \mathrm{I}$ (5).

It has been pointed out earlier that reflections $0 k 0$ are absent when k is odd, but also that the structure does not contain any 2_{1} axes. This can be readily explained by referring to the coordinates of the equipoints in Pa, namely (x, y, z) and $\left(\frac{1}{2}+x, \vec{y}, z\right)$ and to Table I: it is seen that the y coordinates of pairs of ions ($1-2 ; 3-4$, etc.) in the table are related closely by $y, \frac{1}{2}+y$, if one takes the proper sign for y in each case. For example, taking the negative sign for y of Rb 2 gives -0.1561 equivalent to 0.8439 plus $\frac{1}{2}$ gives 0.3439 , which differs by 0.0087 from the y of Rbl.

The ordering of the ions in Table I was done early in the structure refinement. After completing the refinement by least squares, the projection of the structure down the b-axis (Fig. 1) indicated that there could be a better choice of pairs. The projection shows "pseudocenters," halfway between, e.g., Cl 7 and $\mathrm{Cl} 8, \mathrm{Cl} 5$ and Cl 6 , Cl 2 and $\mathrm{Cl} 14, \mathrm{Cl} 1$ and Cl 13 .

Choosing the last pair gives as the x and z coordinates of the pseudocenter: 0.6870 and 0.6333 , respectively. Shifting the origin by $(-0.6870,0,-0.6333)$ puts it at a pseudo-twofold screw axis. Also, in the International Tables for X-Ray Crystallography, the glide plane in $P 2_{1} / a$ is shifted $b / 4$ with respect to $P a$, and the screw axes in $P 2_{1} / a$ are at $\pm a / 4$ with respect to $P a$. Therefore the origin was shifted an additional ($-\frac{1}{4},-\frac{1}{4}, 0$); the total shift was then ($-0.9370,-\frac{1}{4},-0.6333$).

The pseudocenters produced the following pairs, for Rb : 1-5, 2-6, 3-8, 4-7; for $\mathrm{Cu}: 1-4,2-3,5-8,6-7,9-10$; for $\mathrm{Cl}: 1-13$, $2-14,3-11,4-12,5-6,7-8,9-15,10-16$, 17-18. Least-squares refinement was carried out with the first set relative to the new origin. Remarkably, the final R value was 0.045 , only 0.011 greater than for the refinement in Pa. The values of the parameters converged to the averages of the appropriate pairs within one standard error; in most cases, very much less than one standard error.

The most significant change from the true structure occurred for Cu 6 paired with Cu 7 . In P_{1} / a, The $\mathrm{Cu} 6-\mathrm{Cl} 11$ and $\mathrm{Cu} 7-\mathrm{Cl} 3$ distances became equivalent and equal to 2.897(7) \AA; effectively Cu7 became more nearly three coordinated. There were also many less important changes in distances.

Nevertheless, it should be emphasized that the structure is definitely acentric. This is shown from the statistical calculations on the $\left|F_{\text {obs }}\right|$, as mentioned earlier, completely incorrect peaks given by MULTAN when $P 2_{1} / a$ is used as the space group, and the significantly better R value for the true structure. Most important, a simple test for pyroelectricity gave a positive result.

Appendix: Comments on the Structure of $\mathbf{R b}_{2} \mathbf{C u C l}_{3}$

Buerger precession camera photographs of a single-crystal chip of $\mathrm{Rb}_{2} \mathrm{CuCl}_{3}$, taken with $\mathrm{MoK} \alpha$ radiation, indicate that $\mathrm{Rb}_{2} \mathrm{Cu}-$ Cl_{3} is orthorhombic (diffraction symmetry mmm). Reflections $h 0 l$ are present only for $h=2 n$ and $0 k l$ only for $k+l=2 n$; thus, the probable space groups are $\operatorname{Pnam}\left(D_{2 h}^{16}\right)$ or $\operatorname{Pna}_{1}\left(C_{2 v}^{9}\right)$. The lattice constants determined from the precession photographs are: $a=12.46(2), b=12.98(2), c=4.27(1)$ \AA. By comparison, the lattice constants of $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ are: $12.00(2), 12.55(2), 4.20(2) \AA$, respectively; $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ belongs to Pnam and its crystal structure has been known for
many years (3). The relationship of the lattice constants of the two crystals supports our hypothesis that the crystals of $\mathrm{Rb}_{2} \mathrm{Cu}-$ Cl_{3} and $\mathrm{K}_{2} \mathrm{CuCl}_{3}$ are isostructural.

Acknowledgments

This work was supported by the National Science Foundation under Grant DMR-8103035 through the Ceramics Program of the Division of Materials Research. One of us (S.G.) wishes to thank the Council of Research and Creative Work of the University of Colorado for a Faculty Fellowship for the academic year 1985-1986 during which part of this research was car-
ried out. We wish to thank C. Haltiwanger for collecting the diffraction data.

References

1. S. Geller and Xie Sishen, J. Solid State Chem. 63, 316 (1986).
2. J. M. Gaines and S. Geller, J. Electrochem. Soc., in press.
3. C. Brink and C. H. MacGillavry, Acta Crystallogr. 2, 148 (1949).
4. P. B. Crandall, Rev. Sci. Instrum. 41, 1895 (1970) and references therein.
5. S. Geller and J. M. Gaines, J. Solid State Chem. 59, 116 (1985).
6. R. D. Armstrong, R. S. Bulmer, and T. Dickinson, J. Solid State Chem. 8, 219 (1973).

[^0]: * On leave from the Institute of Physics, Chinese Academy of Sciences, Beijing, China.
 0022-4596/86 \$3.00

[^1]: ${ }^{1}$ See NAPS document No. 04374 for 12 pages of supplementary material. Order from ASIS/NAPS, Micofiche Publications, P.O. Box 3513, Grand Central Station, New York, NY 10163. Remit in advance $\$ 4.00$ for microfiche copy or for photocopy, $\$ 7.75$ up to 20 pages plus $\$.30$ for each additional page. All orders must be prepaid. Institutions and organizations may order by purchase order. However, there is a billing and handling charge for this service of $\$ 15$. Foreign orders add $\$ 4.50$ for postage and handling, for the first 20 pages, and $\$ 1.00$ for additional 10 pages of material. Remit $\$ 1.50$ for postage of any microfiche orders.

[^2]: " Considered to be nonbonding.
 ${ }^{5}$ All standard errors are $0.02 \AA$.

